News-Based Group Modeling and Forecasting
نویسندگان
چکیده
In this paper, we study news group modeling and forecasting methods using quantitative data generated by our largescale natural language processing (NLP) text analysis system. A news group is a set of news entities, like top U.S. cities, governors, senators, golfers, or movie actors. Our fame distribution analysis of news groups shows that lognormal and power-law distributions generally could describe news groups in many aspects. We use several real news groups including cities, politicians, and CS professors, to evaluate our news group models in terms of time series data distribution analysis, group-fame probability analysis, and fame-changing analysis over long time. We also build a practical news generation model using a HMM (Hidden Markov Model) based approach. Most importantly, our analysis shows the future entity fame distribution has a power-law tail. That is, only a small number of news entities in a group could become famous in the future. Based on these analysis we are able to answer some interesting forecasting problems for example, what is the future average fame (or maximum fame) of a specific news group? And what is the probability that some news entity become very famous within a certain future time range? We also give concrete examples to illustrate our forecasting approaches.
منابع مشابه
An Approach of Artificial Neural Networks Modeling Based on Fuzzy Regression for Forecasting Purposes
In this paper, a new approach of modeling for Artificial Neural Networks (ANNs) models based on the concepts of fuzzy regression is proposed. For this purpose, we reformulated ANN model as a fuzzy nonlinear regression model while it has advantages of both fuzzy regression and ANN models. Hence, it can be applied to uncertain, ambiguous, or complex environments due to its flexibility for forecas...
متن کاملSeasonality and Forecasting of Monthly Broiler Price in Iran
The objective of this study was to model seasonal behavior of broiler price in Iran that can be used to forecast the monthly broiler prices. In this context, the periodic autoregressive (PAR), the seasonal integrated models, and the Box-Jenkins (SARIMA) models were used as the primary nominates for the forecasting model. It was shown that the PAR (q) model could not be considered as an appropri...
متن کاملModeling and forecasting US presidential election using learning algorithms
The primary objective of this research is to obtain an accurate forecasting model for the US presidential election. To identify a reliable model, artificial neural networks (ANN) and support vector regression (SVR) models are compared based on some specified performance measures. Moreover, six independent variables such as GDP, unemployment rate, the president’s approval rate, and others are co...
متن کاملModeling the Impact of News on volatility The Case of Iran
In this paper various ARCH models and relevant news impact curves including a partially nonparametric (PNP) one are compared and estimated with daily Iran stock return data. Diagnostic tests imply the asymmetry of the volatility response to news. The EGARCH model, which passes all the tests and appears relatively matching with the asymmetry in the data, seems to be the most adequate characteriz...
متن کاملCreep Life Forecasting of Weldment
One of the yet unresolved engineering problems is forecasting the creep lives of weldment in a pragmatic way with sufficient accuracy. There are number of obstacles to circumvent including: complex material behavior, lack of accurate knowledge about the creep material behavior specially about the heat affected zones (HAZ),accurate and multi-axial creep damage models, etc. In general, creep life...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1405.2622 شماره
صفحات -
تاریخ انتشار 2014